Service Repair Documentation Level 2.5e – A70, A75

Release	Date	Department	Notes to change
1.0	06.06.2005	ICM MP CCQ GRM T	New document

Copyright 2005© Siemens AG

SIEMENS Com

Table of Contents:

1	Instruction	4
2	List of available level 2,5e parts A70	5
3	List of available level 2,5e parts A75	6
4	Required Equipment for Level 2,5e	8
5	Required Software for Level 2,5e	8
6	Radio Part	9
6	6.1 BLOCK DIAGRAM RF PART	10
6	6.2 POWER SUPPLY RF-PART	11
6	6.3 FREQUENCY GENERATION	11
6	6.4 RECEIVER	15
6	6.5 TRANSMITTER	16
6	6.6 BRIGHT IC OVERVIEW	17
6	6.7 ANTENNA SWITCH (ELECTRICAL/MECHANICAL)	19
7	Logic / Control	22
7	7.1 Overview of Hardware Structure A70	22
7	7.2 Overview of Hardware Structure A75	23
7	7.3 EGOLDLITE	24
7	7.4 SRAM	30
7	7.5 FLASH	30
7	7.6 SIM	30
7	7.7 VIBRATION MOTOR	30
7	7.8 DISPLAY MODULES	31
7	7.9 ILLUMINATION – KEYBOARD	33
8	Acoustic	34
9	Power Supply, Battery and Charging	34
ç	9.1 POWER SUPPLY ASIC	35
ç	9.2 BATTERY	42
ç	9.3 CHARGING CONCEPT	43

SIEMENS Com

10 Inter	faces	46	
10.1	VIBRA (XG220)	46	
10.2	EARPIECE (XG243)	47	
10.3	MICROPHONE	48	
10.4	BATTERY (X181)	48	
10.5	IO CONNECTOR (X211) WITH ESD PROTECTION (Z211)	49	
10.6	SIM	51	
11 Keyk	1 Keyboard		

SIEMENS Com

1 Instruction

This Service Repair Documentation is intended to carry out repairs on Siemens repair level 2.5. The described failures shall be repaired in Siemens authorized local workshops only.

All repairs have to be carried out in an ESD protected environment and with ESD protected equipment/tools. For all activities the international ESD regulations have to be considered.

Assembling/disassembling has to be done according to the latest A70, A75 Level 2 repair documentation. It has to be ensured that every repaired mobile Phone is checked according to the latest released General Test Instruction document (both documents are available in the Technical Support section of the C-market).

Check at least weekly C-market for updates and consider all A70, A75 related Customer Care Information, and Repair Information who are relevant for A70, A75.

A70 Partnumber on IMEI label: A75 Partnumber on IMEI label: S30880-S2770-#xxx S30880-S2790-#xxx

, while # may be any letter (A-Z) and xxx may be any number from 100, 101, 102....

Scrap Handling: All Scrap information given in this manual are related to the SCRAP-Rules and instructions.

Attention: Consider the new "LEAD-FREE" soldering rules (A70 and A75 affected) (available in the communication market), avoid excessive heat.

If you have any questions regarding the repair procedures or technical questions spare not hesitate to contact our technical support team in Kamp-Lintfort, Germany:

Tel.: +49 2842 95 4666 Fax: +49 2842 95 4302 e-mail: st-support@klf.siemens.de

SIEMENS Com

2 List of available level 2,5e parts A70

(according to Component Matrix V1.03 - check C-market for updates)

	RF			
Product	Chipset	ID	Order Number	Description CM
A70	HIT	C204	L36377-F6225-M	CAPACITOR 2U2 (Cap-Type4)
A70	HIT	C230	L36377-F6225-M	CAPACITOR 2U2 (Cap-Type4)
A70	HIT	C368	L36377-F6225-M	CAPACITOR 2U2 (Cap-Type4)
A70	HIT	C369	L36377-F6225-M	CAPACITOR 2U2 (Cap-Type4)
A70	HIT	C370	L36377-F6225-M	CAPACITOR 2U2 (Cap-Type4)
A70	HIT	C371	L36377-F6225-M	CAPACITOR 2U2 (Cap-Type4)
A70	HIT	C372	L36377-F6105-K	CAPACITOR 1U (Cap-Type6)
A70	HIT	C373	L36377-F6225-M	CAPACITOR 2U2 (Cap-Type4)
A70	HIT	C377	L36377-F6225-M	CAPACITOR 2U2 (Cap-Type4)
A70	HIT	C916	L36377-F6225-M	CAPACITOR 2U2 (Cap-Type4)
A70	HIT	D171	L50610-L6150-D670	IC EGOLDLITE PMB7860
A70	HIT	D361	L50645-J4682-Y55	IC ASIC SALZBURG75 TWIGO3+75
A70	HIT	D901	L50651-Z2002-A82	IC MODUL PA PF0814 (PA-Type2)
A70	HIT	D902	L50645-K280-Y303	IC FEM HITACHI GSM900 1800 1900 (Fem-Type5)
A70	HIT	D903	L50620-L6170-D670	IC TRANCEIVER HD155165BP PB Free
A70	HIT	N308	L50610-C6153-D670	IC V-REG 2.9V (Vr-Type2) PB Free
A70	HIT	R106	L36852-C-X	RESISTOR 0R0 (Res-Type8)
A70	HIT	R141	L36852-C-X	RESISTOR 0R0 (Res-Type8)
A70	HIT	R201	L36852-C-X	RESISTOR 0R0 (Res-Type8)
A70	НІТ	R204	L36852-C-X	RESISTOR 0R0 (Res-Type8)
A70	HIT	R205	L36852-C-X	RESISTOR 0R0 (Res-Type8)
A70	HIT	R221	L36852-C-X	RESISTOR 0R0 (Res-Type8)
A70	HIT	R222	L36852-C-X	RESISTOR 0R0 (Res-Type8)
A70	HIT	R295	L36852-C-X	RESISTOR 0R0 (Res-Type8)
A70	HIT	R371	L36852-C-X	RESISTOR 0R0 (Res-Type8)
A70	HIT	R805	L36852-C-X	RESISTOR 0R0 (Res-Type8)
A70	HIT	R902	L36852-C-X	RESISTOR 0R0 (Res-Type8)
A70	HIT	R955	L36120-F4223-H	RESISTOR TEMP 22K (Res-Type7)
A70	HIT	R958	L36852-C-X	RESISTOR 0R0 (Res-Type8)
A70	HIT	V151	L36840-D5062-D670	DIODE RB751S (Di-Type3)
A70	HIT	V211	L36830-C1097-D670	TRANSISTOR FDG313N (Tra-Type1)
A70	HIT	V222	L36830-C1112-D670	TRANSISTOR SI1902 (Tra-Type4)
A70	HIT	V361	L36830-C1110-D670	TRANSISTOR SI3911 (Tra-Type3)
A70	HIT	Z171	L50645-F102-Y40	QUARZ 32,768KHZ (Q-Type4)
A70	HIT	Z211	L50640-U6034-D670	FILTER EMI (Fi-Type3) PB Free
A70	HIT	Z950	L36145-F260-Y17	QUARZ 26MHZ (Q-Type4)

Copyright 2005© Siemens AG

SIEMENS Com

3 List of available level 2,5e parts A75

(according to Component Matrix V1.03 - check C-market for updates)

	RF			
Product	Chipset	ID	Order Number	Description CM
A75	HIT	C165	L36853-C9104-M4	CAPACITOR 100N (Cap-Type2)
A75	HIT	C200	L36853-C9104-M4	CAPACITOR 100N (Cap-Type2)
A75	HIT	C204	L36377-F6225-M	CAPACITOR 2U2 (Cap-Type4)
A75	HIT	C209	L36853-C9104-M4	CAPACITOR 100N (Cap-Type2)
A75	HIT	C220	L36853-C9104-M4	CAPACITOR 100N (Cap-Type2)
A75	HIT	C229	L36853-C9104-M4	CAPACITOR 100N (Cap-Type2)
A75	HIT	C230	L36377-F6225-M	CAPACITOR 2U2 (Cap-Type4)
A75	HIT	C236	L36853-C9104-M4	CAPACITOR 100N (Cap-Type2)
A75	HIT	C283	L36377-F6105-K	CAPACITOR 1U (Cap-Type6)
A75	HIT	C284	L36377-F6105-K	CAPACITOR 1U (Cap-Type6)
A75	HIT	C285	L36377-F6105-K	CAPACITOR 1U (Cap-Type6)
A75	HIT	C286	L36377-F6105-K	CAPACITOR 1U (Cap-Type6)
A75	HIT	C287	L36377-F6225-M	CAPACITOR 2U2 (Cap-Type4)
A75	HIT	C288	L36377-F6225-M	CAPACITOR 2U2 (Cap-Type4)
A75	HIT	C289	L36377-F6225-M	CAPACITOR 2U2 (Cap-Type4)
A75	HIT	C362	L36853-C9104-M4	CAPACITOR 100N (Cap-Type2)
A75	HIT	C363	L36853-C9104-M4	CAPACITOR 100N (Cap-Type2)
A75	HIT	C364	L36853-C9104-M4	CAPACITOR 100N (Cap-Type2)
A75	HIT	C365	L36853-C9104-M4	CAPACITOR 100N (Cap-Type2)
A75	HIT	C366	L36853-C9104-M4	CAPACITOR 100N (Cap-Type2)
A75	HIT	C367	L36853-C9104-M4	CAPACITOR 100N (Cap-Type2)
A75	HIT	C369	L36377-F6225-M	CAPACITOR 2U2 (Cap-Type4)
A75	HIT	C370	L36377-F6225-M	CAPACITOR 2U2 (Cap-Type4)
A75	HIT	C371	L36377-F6225-M	CAPACITOR 2U2 (Cap-Type4)
A75	HIT	C372	L36377-F6105-K	CAPACITOR 1U (Cap-Type6)
A75	HIT	C373	L36377-F6225-M	CAPACITOR 2U2 (Cap-Type4)
A75	HIT	C374	L36853-C9104-M4	CAPACITOR 100N (Cap-Type2)
A75	HIT	C377	L36377-F6225-M	CAPACITOR 2U2 (Cap-Type4)
A75	HIT	C381	L36853-C9104-M4	CAPACITOR 100N (Cap-Type2)
A75	HIT	C382	L36853-C9104-M4	CAPACITOR 100N (Cap-Type2)
A75	HIT	C383	L36853-C9104-M4	CAPACITOR 100N (Cap-Type2)
A75	HIT	C384	L36853-C9104-M4	CAPACITOR 100N (Cap-Type2)
A75	HIT	C385	L36853-C9104-M4	CAPACITOR 100N (Cap-Type2)
A75	HIT	C386	L36853-C9104-M4	CAPACITOR 100N (Cap-Type2)
A75	HIT	C5	L36853-C9104-M4	CAPACITOR 100N (Cap-Type2)
A75	HIT	C6	L36377-F6225-M	CAPACITOR 2U2 (Cap-Type4)

A75	HIT	C803	L36853-C9104-M4	CAPACITOR 100N (Cap-Type2)
A75	HIT	C805	L36853-C9104-M4	CAPACITOR 100N (Cap-Type2)
A75	HIT	C809	L36853-C9104-M4	CAPACITOR 100N (Cap-Type2)
A75	HIT	C820	L36853-C9104-M4	CAPACITOR 100N (Cap-Type2)
A75	HIT	C821	L36853-C9104-M4	CAPACITOR 100N (Cap-Type2)
A75	HIT	C912	L36853-C9104-M4	CAPACITOR 100N (Cap-Type2)
A75	HIT	C916	L36377-F6225-M	CAPACITOR 2U2 (Cap-Type4)
A75	HIT	C961	L36853-C9104-M4	CAPACITOR 100N (Cap-Type2)
A75	HIT	C965	L36853-C9104-M4	CAPACITOR 100N (Cap-Type2)
A75	HIT	D171	L50610-L6150-D670	IC EGOLDLITE PMB7860
A75	HIT	D361	L50645-J4682-Y55	IC ASIC SALZBURG75 TWIGO3+75
A75	HIT	D901	L50651-Z2002-A82	IC MODUL PA PF0814 (PA-Type2)
A75	HIT	D902	L50645-K280-Y303	IC FEM HITACHI GSM900 1800 1900 (Fem-Type5)
A75	HIT	D903	L50620-L6170-D670	IC TRANCEIVER HD155165BP PB Free
A75	HIT	N280	L50610-C6169-D670	IC V-REG LM2794TLX (Vr-Type5) PB Free
A75	HIT	N307	L50610-C6232-D670	IC V-REG 1.8V (Vr-Type3)
A75	HIT	N308	L50610-C6153-D670	IC V-REG 2.9V (Vr-Type2) PB Free
A75	HIT	R106	L36852-C-X	RESISTOR 0R0 (Res-Type8)
A75	HIT	R141	L36852-C-X	RESISTOR 0R0 (Res-Type8)
A75	HIT	R205	L36852-C-X	RESISTOR 0R0 (Res-Type8)
A75	HIT	R221	L36852-C-X	RESISTOR 0R0 (Res-Type8)
A75	HIT	R222	L36852-C-X	RESISTOR 0R0 (Res-Type8)
A75	HIT	R295	L36852-C-X	RESISTOR 0R0 (Res-Type8)
A75	HIT	R371	L36852-C-X	RESISTOR 0R0 (Res-Type8)
A75	HIT	R805	L36852-C-X	RESISTOR 0R0 (Res-Type8)
A75	HIT	R902	L36852-C-X	RESISTOR 0R0 (Res-Type8)
A75	HIT	R910	L36852-C-X	RESISTOR 0R0 (Res-Type8)
A75	HIT	R955	L36120-F4223-H	RESISTOR TEMP 22K (Res-Type7)
A75	HIT	R958	L36852-C-X	RESISTOR 0R0 (Res-Type8)
A75	HIT	V151	L36840-D5062-D670	DIODE RB751S (Di-Type3)
A75	HIT	V211	L36830-C1097-D670	TRANSISTOR FDG313N (Tra-Type1)
A75	HIT	V222	L36830-C1112-D670	TRANSISTOR SI1902 (Tra-Type4)
A75	HIT	V361	L36830-C1110-D670	TRANSISTOR SI3911 (Tra-Type3)
A75	HIT	Z171	L50645-F102-Y40	QUARZ 32,768KHZ (Q-Type4)
A75	HIT	Z211	L50640-U6034-D670	FILTER EMI (Fi-Type3) PB Free
A75	HIT	Z950	L36145-F260-Y17	QUARZ 26MHZ (Q-Type4)

Copyright 2005© Siemens AG

SIEMENS Com

4 Required Equipment for Level 2,5e

- GSM-Tester (CMU200 or 4400S incl. Options)
- PC-incl. Monitor, Keyboard and Mouse
- Bootadapter 2000/2002 (L36880-N9241-A200)
- Adapter cable for Bootadapter due to <u>new</u> Lumberg connector (F30032-P226-A1)
- Troubleshooting Frame A62/A65(A70/A75) (F30032-P405-A1)
- Power Supply
- Spectrum Analyser
- Active RF-Probe incl. Power Supply
- Oscilloscope incl. Probe
- RF-Connector (N<>SMA(f))
- Power Supply Cables
- Dongle (F30032-P28-A1) if USB-Dongle is used a special driver for NT is required
- Soldering and BGA Soldering equipment for lead free soldering.

Reference: Equipment recommendation (downloadable from the technical support page)

5 Required Software for Level 2,5e

- Windows XP
- X-Focus
- GRT Version 2 or higher
- Internet unblocking solution (JPICS)

6 Radio Part

The radio part is realizes the conversion of the GMSK-HF-signals from the antenna to the baseband and vice versa.

In the receiving direction, the signals are split in the I- and Q-component and led to the D/Aconverter of the logic part. In the transmission direction, the GMSK-signal is generated in an Up Conversion Modulation Phase Locked Loop by modulation of the I- and Q-signals which were generated in the logic part. After that the signals are amplified in the power amplifier.

Transmitter and Receiver are never active at the same time. Simultaneous receiving in the EGSM900 and GSM1800 band is impossible. Simultaneous transmission in the EGSM900 and GSM1800 band is impossible, too. However the monitoring band (monitoring timeslot) in the TDMA-frame can be chosen independently of the receiving respectively the transmitting band (RX- and TX timeslot of the band).

The RF-part is dimensioned for triple band operation (EGSM900, DCS1800, PCS19000) supporting GPRS functionality up to multiclass 8.

The RF-circuit consists of the following components:

- Hitachi Bright VI E chip set (HD155165BP) with the following functionality:
 - PLL for local oscillator LO1 and LO2 and TxVCO
 - Integrated local oscillators LO1, LO2
 - Integrated TxVCO
 - Direct conversion receiver including LNA, DC-mixer, channel filtering and PGC-amplifier
 - o 26 MHz reference oscillator
- Hitachi LTCC transmitter power amplifier with integrated power control circuitry
- Hitachi Frontend-Module including RX-/TX-switch and EGSM900 / DCS1800 / PCS 1900 receiver SAW-filters
- Quartz and passive circuitry of the 26MHz VCXO reference oscillator

SIEMENS Com

Copyright 2005© Siemens AG

6.1 Block diagram RF part

Page 10 of 53

SIEMENS Com

Copyright 2005© Siemens AG

6.2 Power Supply RF-Part

The voltage regulator for the RF-part is located inside the ASIC D361.It generates the required 2,8V "RF-Voltages" named VDD_RF1 and VDD_RF2. VDD_RF2 is passed via a 0Ω resistor and renamed as VDD_BRIGHT as operating voltage for the BRIGHT. The voltage regulator is activated as well as deactivated via SLEEPQ (TDMA-Timer R11) and VCXOEN_UC (M4) provided by the EGOLDlite. The temporary deactivation is used to extend the stand by time.

6.3 Frequency generation

Synthesizer: The discrete VCXO (26MHz)

The A70/A75 mobile is using a reference frequency of 26MHz. The generation of the 26MHz signal is done via a VCO (Z950).

TP (test point) of the 26MHz signal is the TP 820

The oscillator output signal 26MHz_RF is directly connected to the BRIGHT IC (ball B9,. C9) to be used as reference frequency inside the Bright (PLL). The signal leaves the Bright IC as RF_SIN26M (ball G9) to be further used from the EGOLDlite (D171 (C8)).

Copyright 2005© Siemens AG

To compensate frequency drifts (e.g. caused by temperature) the oscillator frequency is controlled by the (RF_AFC) signal, generated through the internal EGOLDlite (D171 (A10)) PLL. Reference for the "EGOLD-PLL" is the base station frequency received via the Frequency Correction Burst.

The required voltage VDD_RF2 is provided by the ASCI D361

Waveform of the AFC_PNM signal from EGOLDlite to Oscillator

Page 12 of 53

Copyright 2005© Siemens AG

SIEMENS Com

Synthesizer: LO1

First local oscillator (LO1) consists of a PLL and VCO inside Bright (D903) and an internal loop filter

<u>RF PLL</u>

The frequency-step is 400 kHz in GSM1800 mode and 800kHz in EGSM900 mode due to the internal divider by two for GSM1800 and divider by four for EGSM900. To achieve the required settling-time in GPRS operation, the PLL can operate in fastlock-mode a certain period after programming to ensure a fast settling. After this the loopfilter and currents are switched into normal-mode to get the necessary phasenoise-performance. The PLL is controlled via the tree-wire-bus of Bright VI E.

RFVCO (LO1)

The first local oscillator is needed to generate frequencies which enable the transceiver IC to demodulate the receiver signal and to perform the channel selection in the TX part. The VCO module is switched on with the signal PLLON. The full oscillation range is divided into 256 sub-bands To do so, a control voltage for the LO1 is used, gained by a comparator. This control voltage is a result of the comparison of the divided LO1 and the 26MHz reference Signal. The division ratio of the dividers is programmed by the EGOLDlite, according to the network channel requirements.

SIEMENS Com

Copyright 2005© Siemens AG

Band	RX/TX	Channels	RF frequencies	LO1 frequency	IF freq.
EGSM 900	Receive:	0124	935,0 - 959,8 MHz	LO1 = 4*RF	
EGSM 900	Transmit:	0124	890,0 - 914,8 MHz	$LO1 = 4^{*}(RF+IF)$	80,0 MHz
EGSM 900	Receive:	9751023	925,2 - 934,8 MHz	LO1 = 4*RF	
EGSM 900	Transmit:	9751023	880,2 - 889,8 MHz	LO1 = 4*(RF+IF)	82,0 MHz
GSM 1800	Receive:	512661	1805,2 - 1835,0 MHz	LO1 = 2*RF	
GSM 1800	Transmit:	512661	1710,2 - 1740,0 MHz	$LO1 = 2^{*}(RF+IF)$	80,0 MHz
GSM 1800	Receive:	661885	1835,0 - 1879,8 MHz	LO1 = 2*RF	
GSM 1800	Transmit:	661885	1740,0 - 1784,8 MHz	$LO1 = 2^{*}(RF+IF)$	82,0 MHz
GSM 1900	Receive:	512810	1930,2 - 1989,8 MHz	LO1 = 2*RF	
GSM 1900	Transmit:	512810	1850,2 - 1909,8 MHz	$LO1 = 2^{*}(RF+IF)$	80,0 MHz

Matrix to calculate the TX and RX frequencies A70/A75:

Synthesizer: LO2

The second local oscillator (LO2) consists of a PLL and VCO inside Bright (D903) and an internal loop filter. Due to the direct conversion receiver architecture, the LO2 is only used for transmit-operation. The LO2 covers a frequency range of at least 16 MHz (640MHz – 656MHz).

Before the LO2-signal gets to the modulator it is divided by 8. So the resulting TX-IF frequencies are 80/82 MHz (dependent on the channel and band). The LO2 PLL and powerup of the VCO is controlled via the tree-wire-bus of Bright (EGOLDLite signals RF_DAT; RF_CLK; RF_STR). To ensure the frequency stability, the 640MHz VCO signal is compared by the phase detector of the 2nd PLL with the 26Mhz reference signal. The resulting control signal passes the external loop filter and is used to control the 640/656MHz VCO.

The required voltage VDD_BRIGHT is provided by the ASIC D361

SIEMENS Com

6.4 Receiver

Receiver: Filter to Demodulator

The band filters are located inside the frontend module (D902). The filters are centred to the band frequencies. The symmetrical filter output is matched to the LNA input of the Bright .The Bright 6E incorporates three RF LNAs for GSM850/EGSM900, GSM1800 and GSM1900 operation. The LNA/mixer can be switched in High- and Low-mode to perform an amplification of ~ 20dB. For the "High Gain" state the mixers are optimised to conversion gain and noise figure, in the "Low Gain" state the mixers are optimised to large-signal behavior for operation at a high input level. The Bright performs a direct conversion mixers which are IQdemodulators. For the demodulation of the received GSM signals the LO1 is required. The channel depending LO1 frequencies for 1800MHz/1900MHz bands are divided by 2 and by 4 for 850MHG/900MHz band. Furthermore the IC includes a programmable gain baseband amplifier PGA (90 dB range, 2dB steps) with automatic DC-offset calibration. LNA and PGA are controlled via EGOLDlite signals RF_DAT; RF_CLK; RF_STR(RF Contr N6, R6, N4). The channel-filtering is realized inside the chip with a three stage baseb nd filter for both IQ chains. Only two capacitors which are part of the first passive RC-filters are external. The second and third filters are active filters and are fully integrated. The IQ receive signals are fed into the A/D converters in the EGAIM part of EGOLDlite. The post-switched logic measures the level of the demodulated baseband signal and regulates the level to a defined value by varying the PGA amplification and switching the appropriate LNA gains.

From the antenna switch, up to the demodulator the received signal passes the following blocks to get the demodulated baseband signals for the EGOLDlite:

The required voltage VDD_BRIGHT is provided by the ASIC D361

SIEMENS Com

6.5 Transmitter

Transmitter: Modulator and Up-conversion Loop

The generation of the GMSK-modulated signal in Bright (D903) is based on the principle of up conversion modulation phase locked loop. The incoming IQ-signals from the baseband are mixed with the divided LO2-signal. The modulator is followed by a lowpass filter (corner frequency ~80 MHz) which is necessary to attenuate RF harmonics generated by the modulator. A similar filter is used in the feedback-path of the down conversion mixer.

With help of an offset PLL the IF-signal becomes the modulated signal at the final transmit frequency. Therefore the GMSK modulated rf-signal at the output of the TX-VCOs is mixed with the divided LO1-signal to a IF-signal and sent to the phase detector. The I/Q modulated signal with a center frequency of the intermediate frequency is send to the phase detector as well.

The output signal of the phase detector controls the TxVCO and is processed by a loop filter whose components are external to the Bright. The TxVCO which is realized inside the Bright chip generates the GSMK modulated frequency.

The required voltage VDD_BRIGHT is provided by the ASIC D361

SIEMENS Com

Copyright 2005© Siemens AG

6.6 Bright IC Overview

BRIGHT 6E

IC Overview

SIEMENS Com

Copyright 2005© Siemens AG

IC top view (ball overview)

Copyright 2005© Siemens AG

6.7 Antenna switch (electrical/mechanical)

Internal/External <> Receiver/Transmitter

The A70 mobile have two antenna switches.

- a) The mechanical antenna switch for the differentiation between the internal and external antenna which is used <u>only for RF adjustments on the board</u>.
- b) The electrical antenna switch, for the differentiation between the receiving and transmitting signals.

To activate the correct tx pathes of this diplexer, the EGOLDlite signals RF_FE_DTR_GSM and RF_FE_DTR_DCS are required.

Internal/External antenna switch

The electrical antenna switch

Top View :

Page 19 of 53

Copyright 2005© Siemens AG

Switching Matrix:

select mode	Vsw 1	Vsw 2
GSM900/DCS1800/PCS1900 RX	Low	Low
EGSM TX	high	Low
DCS1800/PCS1900 TX	Low	High

Pin assignment:

1	Antenna	15	PCS1900 RX1
2	GND	16	PCS1900 RX2
3	Vsw2 (DCS1800/PCS1900 TX control)	17	GND
4	GND	18	GND
5	DCS1800/PCS1900 TX	19	GND
6	GND	20	GND
7	GND	21	GND
8	EGSM900 TX	22	GND
9	Vsw1 (EGSM900 TX control)	23	GND
10	GND	24	GND
11	EGSM900 RX1	25	GND
12	EGSM900 RX2	26	GND
13	DCS1800 RX1	27	GND
14	DCS1800 RX2	28	GND

SIEMENS Com

Copyright 2005© Siemens AG

Transmitter: Power Amplifier

The output signals (PCN_PA_IN , and GSM_PA_IN) from the TxVCO are led to the power amplifier. The power amplifier is a PA-module N901 from Hitachi. It contains two separate 3-stage amplifier chains GSM850/EGSM900 and GSM1800 / GSM1900 operation. It is possible to control the output-power of both bands via one VAPC-port. The appropriate amplifier chain is activated by a logic signal RF_BAND_SW (TDMA Timer P10) which is provided by the EGOLDLite.

To ensure that the output power and burst-timing fulfills the GSM-specification, an internal power control circuitry is use. The power detect circuit consists of a sensing transistor which operates at the same current as the third RF-transistor. The current is a measure of the output power of the PA. This signal is square-root converted and converted into a voltage by means of a simple resistor. It is then compared with the RF_RAMP1 (F12) signal. The N901 is activated through the signal RF_TXONPA (TDMA Timer P3).

The required voltage BATT+ is provided by the battery.

Circuit diagram

Copyright 2005© Siemens AG

7 Logic / Control

7.1 Overview of Hardware Structure A70

Page 22 of 53

7.2 Overview of Hardware Structure A75

Page 23 of 53

SIEMENS Com

Copyright 2005© Siemens AG

7.3 EGOLDlite

Blockdiagram EGOLDlite

Copyright 2005© Siemens AG

E-GOLDlite is designed as a single chip solution that integrates the digital and mixed signal portions of the baseband. It uses a leading 0.13 µm technology with a core voltage of 1.5 V. This allows and high performance mobile station with a large set of features at very low cost. E-GOLDlite has a flexible set of interfaces that allows a wide choice of communication interfaces and supports a high multimedia data rate.

E-GOLDlite is powered by C166[®]S CPU and TEAKLite[®] DSP cores.

The E-GOLDlite is placed in a S-LF2BGA201 (a "flipchip" with 201 pins) with 0,5mm Ball-Pitch.

The E-GOLDlite is suited for mobile stations operating in the GSM850/900/1800/1900 bands.

In the receiver path the antenna input signal is converted to the base band, filtered, and amplified to target level by the RF transceiver chipset. The resulting differential I and Q baseband signals are fed into the E-GOLDlite. The A-to-D converter generates two 6.5 Mbit/s data streams. The decimation and narrowband channel filtering is done by a digital baseband filter in each path. The DSP performs:

- 1. The GMSK equalization of the received baseband signal.
- 2. Channel decoding, which is supported by an hardware accelerator.

The recovered digital speech data is fed into the speech decoder. The E-GOLDlite supports fullrate, halfrate, enhanced fullrate and adaptive multirate speech CODEC algorithms.

The generated voice signal passes through a digital voiceband filter. The resulting 4 Mbit/s data stream is D-to-A converted by a multi-bit-oversampling converter, postfiltered, and amplified by a programmable gain stage.

The output buffer can drive a handset ear-piece or an external audio amplifier.

In the transmit direction the microphone signal is fed into a programmable gain amplifier. The prefiltered and A-to-D converted voice signal forms a 2 Mbit/s data stream. The oversampled voice signal passes a digital decimation filter.

Speech and channel encoding (including voice activity detection (VAD) and discontinuous transmission (DTX)) as well as digital GMSK modulation is carried out by the E-GOLDlite.

The digital I and Q baseband components of the GMSK modulated signals (48-times oversampled with 13 MSamples/s) are D-to-A converted. The analog differential baseband signals are fed into the RF transceiver chipset.

Copyright 2005© Siemens AG

The RF transceiver modulates the baseband signal to the desired frequency in the 850 MHz, 900 MHz, 1.8 GHz, and 1.9 GHz band using an I/Q modulator. The E-GOLDlite is able to support quad band applications.

Finally, an RF power module amplifies the RF transmit signal to the required power level. Using software, the E-GOLDlite controls the gain of the power amplifier by predefined ramping curves (16 words, 11 bits). The E-GOLDlite communicates with the RF chip set via a serial data interface.

The E-GOLDlite also includes battery charger support (various sensor connections for temperature, battery technology, voltage, etc.) and a ringer buffer.

For base band operation, the E-GOLDlite supports:

• High Speed Circuit Switched Data (HSCSD) class 4

• Packet-oriented data (GPRS) class 4 with a coding scheme from 1 to 4. It provides fixed, dynamic, and extended dynamic modes.

If the E-GOLDlite is only used as a modem, then it supports:

• High Speed Circuit Switched Data (HSCSD) class 10

Note: With a HSCSD class 10, there are a maximum of 4 received time slots and 2 transmitted time slots.

The total maximum number of received and transmitted time slots is 5.

• Packet-oriented data (GPRS) class 10 with a coding scheme from 1 to 4. It provides fixed, dynamic, and extended dynamic modes.

Note: With a GPRS class 10, there are a maximum of 4 received time slots and 2 transmitted time slots.

The total maximum number of received and transmitted time slots is 5.

The E-GOLDlite can support Class B operation. The mobile phone can be attached to both GPRS and GSM services, using one service at a time. During a GPRS connection Class B enables either:

Making or receiving a voice call

• Sending or receiving an SMS.

During voice calls or SMS, GPRS services are suspended and then resumed automatically after the call or SMS session has ended.

E-GOLDlite is made with the Infineon C11N process using the High Voltage Threshold (HVT) and 5 Metal Layer (5LM).

The C11N process is a 0.13 µm technology. It is used for the logic, SRAM, mixed signal, and mixed voltage Input/Output applications.

Page 26 of 53

SIEMENS Com

C166S MCU

The C166S is a 16-bit CMOS (Complementary Metal Oxide Silicon) microcontroller. It contains a CPU (Central Processing Unit) core (the MCU) and a set of peripherals.

The architecture of the MCU combines both RISC (Reduced Instruction Set Computing) and CISC (Complex Instruction Set Computing) architecture.

• High Performance 16-Bit MCU with a four-stage pipeline:

– 38 ns minimum instruction cycle time with most instructions executed in 1 cycle (2 clock ticks)

- 192 ns multiplication (16-bit x 16-bit), 384 ns division (32-bit/16-bit)
- Parallel use of multiple high bandwidth internal data buses
- Register based design with multiple variable register banks
 Single cycle context switching support
- 16 MBytes linear address space for code and data (von Neumann architecture)
- System stack cache support with automatic stack overflow/underflow detection.
- Control Oriented Instruction Set with High Efficiency:
 - Bit, byte, and word data types
 - Flexible and efficient addressing modes for high code density
 - Enhanced boolean bit manipulation with direct addressing of 6 Kbits for peripheral control and user defined flags
 - Hardware traps to identify exception conditions during runtime
 - HLL support for semaphore operations and efficient data access.
- External Bus Interface:
 - Demultiplexed bus configurations
 - Segmentation capability and chip select signal generation
 - 8-bit or 16-bit data bus
 - Bus cycle characteristics selectable for five programmable address areas.
- 16-Priority-Level Interrupt System:
 - Up to 112 interrupt nodes with separate interrupt vectors
 - 16 priority levels and 8 group levels.
- 16-Channel Peripheral Event Controller (PEC):
 - Interrupt driven single cycle data transfer
 - Transfer count option (standard MCU interrupt after programmable number of PEC transfers)
 - Long Transfer Counter
 - Channel Linking
 - Eliminates overhead for saving and restoring system state for interrupt requests.

SIEMENS Com

Copyright 2005© Siemens AG

- DPRAM:
 - Internal 16-bit dual port RAM with a 1K x 16-bit size.
- SCU (System Control Unit):
 - Handles the boot and sleep mode of the core
 - Provides a watchdog timer.

The architecture of the C166S combines the advantages of both RISC (Reduced Instruction Set Computing) and CISC (Complex Instruction Set Computing) processors in a wellbalanced way. C166S based derivatives not only integrate a powerful MCU (Central Processing Unit) core and a set of peripheral units into one chip, but also connects the units in a very efficient way. One of the four buses used concurrently on the C166S is the Internal Bus Interface, an internal representation of the external bus interface. This bus provides a standardized method of integrating application-specific

peripherals to produce derivatives of the standard C166S.

The Principle Elements of a C166S Based System

- MCU block including the configurable Interrupt/PEC controller and debug and break logic
- Configurable dual port RAM
- Configurable Interrupt/PEC controller
- All interfaces for system (on chip) integration, including X-Bus, PD peripheral bus, Local Memory bus (for ROM or SRAM).

The C166 architecture allows instruction execution and data access from all memory locations. This includes X-Bus, local memory bus, dual port and external memories.

All four bus Interfaces of the MCU (X-Bus, LM Bus, RAM Bus and PD Bus) are operated on at the same time by the MCU.

TEAKLite:

The TEAKLite core has 16-bit data and 16-bit program memory accesses, a high performance fixed-point DSP core, and low power consumption.

The core consists of a high performance processing unit including a full featured bitmanipulation unit, RAM and ROM addressing units, and program control logic. The core has an improved set of DSP and general microprocessor functions to meet application requirements. The programming model and instruction set are optimized for generation of efficient and compact code.

The Computation Unit consists of a 16 by 16 multiplier unit with a 32-bit product and a 36-bit ALU with two accumulator registers A0 and A1.

Copyright 2005© Siemens AG

The Bit Manipulation Unit consists of a full 36-bit barrel shifter, an exponent unit, a bit-field operation unit, two 36-bit accumulator registers B0 and B1, and a shift value register.

The Data Address Arithmetic Unit performs all the address storage and address calculation necessary for accessing the data and program memories. It also supports a software stack pointer, loop counter, and min/max operations.

The key features of TEAKlite core are as follows:

- 16-bit fixed-point DSP core
- 16 x 16-bit 2's complement parallel multiplier with a 32-bit product
- Single cycle multiply-accumulate instructions
- 36-bit ALU
- 36-bit left/right barrel shifter
- Four 36-bit accumulators
- Software stack residing in the data RAM
- User-defined registers off-core
- Three high-active interrupt input lines INT0, INT1, and INT2
- Automatic context switching by interrupts
- Up to 16-bit Bit Field Operations (BFO)
- Three modes for power saving features: Operational, Idle, and Sleep.
- The maximum Frequency is 104 MHz. The TEAKlite core clock is scalable to lower frequencies.

In the DSP Firmware are implemented the following functions:

The High Speed Circuit Switched Data (HSCSD) class 4 is supported.

The packet-oriented data (GPRS) class 4 is supported with a coding schemes from 1 to 4. It provides fixed, dynamic and extended dynamic modes.

If the E-GOLDlite is used as a modem, the HSCSD and GPRS class 10 is supported. The packet-oriented data (GPRS) class 10 is supported with a coding schemes from 1 to 4. It provides fixed, dynamic, and extended dynamic modes.

Synchronisation and Measurements

• Scanning of channels (measurement of the field strengths of neighboring base stations)

• Detection and evaluation of Frequency Correction Bursts.

Equalization

There is equalization of GMSK Normal Bursts and Synchronization Bursts with bit-by-bit soft output.

Channel Coder/Decoder

There are Channel Coders/Decoders for 2.4kbits/s, 4.8kbits/s, 9.6kbits/s, and 14.4kbits/s.

SIEMENS Com

Copyright 2005© Siemens AG

Speech

- A Speech Coder-Decoder: FR, EFR, AMR Narrow Band, or HR.
- Discontinuous transmission (DTX)
- Voice activity detection (VAD)
- Comfort noise generation (CNG).

Voiceband

- · Generation of tones and side-tones
- Ringer tone generation
- Echo Cancellation (handsfree) with noise reduction

Also the functionality and the internal and external interfaces of the Audio Scheduler is implemented in DSP firmware of E-GOLDlite.

Real Time Clock (integrated in the E-GOLDlite):

The real time clock (degree of accuracy 150ppm) is powered via a seperate voltage regulator inside the PMU. Via a capacitor, data is kept in the internal RAM during a battery change for at least 30 seconds. An alarm function is also integrated with which it is possible to switch the phone on and off.

7.4 SRAM

Memory for volatile data Memory Size: A70/A75 - 16 Mbit Data Bus: 16Bit

7.5 FLASH

Memory Size: A70 - 32 Mbit (4Mbyte) A75 - 64 Mbit (8Mbyte) Data Bus: 16 Bit

7.6 SIM

SIM cards with supply voltages of 1.8V and 3V are supported.

7.7 Vibration Motor

The vibration motor is mounted in the lower case. The electrical connection to the PCB is realised with pressure contacts.

SIEMENS Com

Copyright 2005© Siemens AG

7.8 Display Modules

The A70 display has a resolution of 101x64 pixels b/w. It contains a passive addressed F-STN panel. The A75 display has a resolution of 101x80 pixels with a colour depth of 256 or 4096 colours. The colour depth is switch-selectable by software. It contains a passive addressed STN panel where the colours are generated by colour filter (C-STN, Colour-Super Twisted Nematic). Different sources are used for the displays. The modules use different LCD-controllers. In order to guarantee a very efficient illumination the Amber LEDs are mounted on a PCB on the module. In addition, all passive components necessary to drive an LCD are assembled on the module PCB. Further, the hardware coding is also implemented on the module PCB. Thus, the only interconnections to the Siemens PCB are the data lines and the power supply lines of the controller and the amber LEDs. The interface is realised by a spring connector with 10 interconnections, which is assembled on the Siemens PCB.

Pin	Name	Remarks
1	LCD_CS	Chip select
2	LCD_RESET	Reset
3	LCD_RS	Register select
4	LCD_CLK	Clock
5	LCD_DAT	Data line
6	2.9V	Power supply display controller
7	GND	GND
8	LCD_LED2_A	Power supply display led 2
9	LIGHT_K	Switched GND for display led 1 and led 2
10	LCD_LED1_A	Power supply display led 1

Required voltage for the display illumination is LCD_LED1_A and LCD_LED2_A. Page 31 of 53

Copyright 2005© Siemens AG

The voltage regulator N280 with a nominal output voltage of 2.8V is used. With the signal LIGHT_LCD (P1) the illumination for the display is controlled.

Required voltage for the display controller VEBU_2.9V. The voltage regulator N308 with a nominal output voltage of 2.9V is used

Copyright 2005© Siemens AG

7.9 Illumination – Keyboard

The LED's are mounted on the upper side of the PCB. The illumination of the keypad will be done via high-brightness LEDs (colour: amber, type: top-shooter, driven by 6 mA / LED). The light is switched via switches inside the EGOLDlite. With the signal LIGHT_KB (R5) the illumination for the keyboard is controlled.

Copyright 2005© Siemens AG

SIEMENS Com

8 Acoustic

The speaker module is designed to provide good performance for mobile handsfree and sound ringer. The speaker module is a system which has a closed front volume with sound-outlets towards the ear of the user. The speaker is partly hidden behind the display to save length of the phone. The back volume of speaker module is using the unused air between the antenna and the PCB. The speaker module is connected to the SAR-frame and contacted via two bending springs to the PCB. For avoiding any interference between antenna and earpiece, there is an antenna reference plate soldered behind the speaker at the PCB. In ringer mode acoustic shock is avoided by using ramping of the ringer level.

The microphone is built in the Mounting Frame Lower Part and is mechanically fixed with a rubber seal (gasket). The contact on the PCB is realised via spiral springs, which are integrated in the gasket. Because of usage of Unidirectional Microphone, the gasket has a front- and a back sound-inlet hole. The front sound-inlet is acoustically tighten connected with a sound-inlet at the rear-side of the mounting frame lower part. The back sound-inlet is acoustically tighten connected with a sound-inlet at the bottom-side of the mounting frame lower part. The gasket of the microphone has a asymmetrical shape in order to provide non-rotating, guaranteed covering of the sound-inlets of mounting frame lower part to the corresponding sound-inlets at microphone gasket.

The buzzer and the keypad clicks will be realized over the earpiece.

The standard sounds will be generated by the EGOLDlite, the advanced sounds will be generated via firmware running on the DSP.

9 Power Supply, Battery and Charging

All the important functions for the power supply of the phone are carried out by the power supply ASIC.

The POWER-pin of the I/O-Connector is for charging the battery with an external power supply.

Copyright 2005© Siemens AG

SIEMENS Com

9.1 Power Supply ASIC

The power supply ASIC will contain the following functions:

- Powerdown-Mode
- Sleep Mode
- Trickle Charge Mode
- Power on Reset
- Digital state machine to control switch on and supervise the uC with a watchdog
- Voltage regulator
- Low power voltage regulator
- Additional output ports
- Voltage supervision
- Temperature supervision with external and internal sensor
- Battery charge control
- TWI Interface (I2C interface)
- Bandgap reference
- Audio multiplexer
- Audio amplifier stereo/mono
- 16 bit Sigma/Delta DAC with Clock recovery and I2S Interface

Power Supply Operating modes:

The ASIC can be used in different operating modes:

Mode	Pin Requirements	Description
Power down mode with minimum activity	ON/OFF ON/OFF2 VDD_CHARGE	In power down mode the current consumption of the ASIC is very low. The inputs for switch on conditions (Pin ON/OFF, ON/OFF2,VDD_CHARGE), the LPREG, Bandgap reference, and the POR cells are active. All other blocks are switched off, so the battery is not discharged. This state is called "phone off.
Start Up Mode	ON_OFF ON_OFF2	Start Up Mode can be initiated by ON_OFF or ON_OFF2. In this mode a sequential start-up of references (this includes the reference buffer and the biasing cell), oscillator., voltage supervision and regulators is controlled by digital part. In failure case (undervoltage, overvoltage or time out of the μ C reaction)., the ASIC is shut down.
Full operating mode	VDD_CHARGE CHARGE_UC	All blocks are active. Trickle charge is switched off. The blocks fast charge and charge monitor can be active only in this mode. These modes will be activated with VDD_CHARGE or CHARGE_UC. The name of this mode is "phone on" or "active mode". The border between the startup phase and the active mode is the rising edge of the RESETN signal. This will allow the uC to start working.

Mode	Pin Requirements	Description
Active Mode (submode of Full operating mode)		In this mode, the uC controls the charging block and most of the failure cases. The ASIC can be controlled by the TWI interface, interrupts can be sent by the ASIC. Further, the temperature and the voltages are supervised (in case of failure, the uC will be informed). In case of watchdog failure, overvoltage or power on reset, the ASIC will be switched off immediately. The mono and stereo audio block can be
Sleep Mode with special low current operating mode for the LDOs (submode of Full operating mode)	SLEEP1_N TC_ON CHARGE_uC	switched on in active mode. A low level at the pin SLEEP1_N will switch the phone from the mode "PHONE ON" to sleep mode. This mode can be activated out of the active mode. In sleep mode trickle charge (TC_ON), fast charge (CHARGE_UC), supply overvoltage detection, supply undervoltage detection, audio function are switched off. LDO undervoltage detection, clock and all reference voltages are active. LDOs are working in low current mode. The possibility to supply the ASIC from VDD_CHARGE with the internal LDO is switched off. Only the battery can be used for supply. This mode is called "phone stand-by".
Trickle charge mode to be able to support charging of the battery	VDD_CHARGE EXT_PWR	In case of a rising edge at VDD_CHARGE the ASIC goes from power down to interim mode. In this mode, the oscillator and the reference are started. The fuses are read in. If the voltage is high enough (after a delay time of 1 ms to filter a ringing), the signal EXT_PWR is going to H and the power up continues. The ASIC shuts off if the voltage is below threshold. In Trickle Charge Mode, first the charge unit starts and charges the battery in case of undervoltage. After reaching this threshold voltage or if the battery has enough voltage from the beginning, a start up similar to the regular startup mode is initiated. In case of voltage drop under battery threshold, the first trickle charging can be started again until the Active Mode is entered. In this case, the internal VDDREF regulator, the reference generator and oscillator are started and the ASIC is supplied by VDDREF. If any failure is detected, the ASIC is switched off.

Copyright 2005© Siemens AG

Power Supply Functions:

Functions	Pin Requirements	Implementation/Sequence
Switching on the	ON_OFF,	There are 3 different possibilities to switch on the phone by
mobile phone	ON_OFF2,	external pins:
	VDD_CHARGE	 VDD_CHARGE with rising edge after POR or high level at
		end of POR signal
		 ON/OFF with falling edge
		 ON/OFF2 with rising edge
		In order to guarantee a defined start-up behaviour of the
		external components, a sequential power up is used and the
		correct start up of these blocks is supervised. In active mode,
		a continuous signal at watchdog is needed to keep the
		system running. If the signals fails, the ASIC will switch to
		power down mode. It must be guaranteed that each start-up
		condition does not interfere and block the other possible
		startup signals. In case of failure during start-up, the device
		will go back to power down mode. To guarantee that
		VDDCHARGE is always sensed we must be able to detect
		whether the VDDCHARGE will have a rising edge during
		POR (this can happen in case of an empty battery). Therefore
		this signal is sensed as level sensitive at the end of POR and
		edge sensitive after POR signal.
Watchdog	WDOG	As soon as the first WDOG pin rising is detected during the
monitoring		reachure Standard switch off of the phone is the watchdog
		The first edge of wetchdog is rising. If a folling edge is
		detected as the first transient the device will go to never
		down mode again and the whole phone is switched off. Rising
		and falling edges must be detected alternated. With any edge
		on WDOG nin a counter will be loaded. The next - compared
		to the previous edge - inverted edge must occur between end
		of T1 and end of T2. If the signal occurs before end of T1 or
		is not detected until end of T2, the device will go to power
		down mode immediately after the violation of the watchdog
		criteria occurs.
		T1 min. 0.327s/ tvp. 0.360s/ max. 0.400s
		T2 min. 2,600s/ typ. 2,860s/ max. 3,178s
Power-On-Reset	RESET N	To guarantee a correct start-up of the ASIC, a power on reset
(POR)	RESET2_N	is needed at first power supply ramping. Therefore a
	_	static/dynamic power on reset circuit is added, which creates
		a reset each time the power supply is connected. After POR
		the ASIC starts up the reference and the oscillator, read in the
		fuse content and goes back to power down mode. If the
		power supply will drop under the POR threshold V _{th,POR_L} a
		synchronous reset is done and the ASIC will go to power
		down mode independently of the previous operating mode.
		V _{th,POR_L} = min. 2.38/ typ. 2.43/ max. 2.48V
Voltage Supply	REG1	The linear controller is designed for $2.65V(\pm 2\%)$ and a
Logics	(2.65V)	maximum load current of 140 mA.
		Voltage and current for the external Logic is supplied from the
		internal 2.65V logic regulator. The operating voltage VREG1
		is kept constant up to the maximum rated load current. A
		reference voltage for the regulator circuit is generated from a
		bandgap reference

Page 37 of 53

Functions	Pin Requirements	Implementation/Sequence
Voltage Supply Logics	REG2 (1,5V) REG3	The linear controller is designed for 1.5V ($\pm 2\%$) and a maximum load current of 300 mA. The output voltage can be adjusted to four different values with TWI register by the μ C. The selectable values are 1.5(default), 1.82, 1.92 and 2.0V. The REG2 supplies the Baseband Processor.
Logics	(2.65V)	maximum load current of 140 mA. It will consist basically of an internal operation amplifier, an integrated p-channel output transistor as well as a capacitor (C = 2.2μ F) for stabilising the voltage. The required reference voltage for the regulating circuit will be generated internally via a band gap. The negative feedback of the regulating circuit shall be done via chip-internal resistances.
Voltage Supply RF	VREGRF1, SLEEP1_N, SLEEP2_N, POWER_ON	The linear controller is designed for 2.755V (±2%) and a maximum load current of 150 mA. The output voltage can be adjusted to three different values with TWI register by the μC. The selectable values are 2.755V(default), 2.54V, and 2.85V. Voltage and current for RF-VCO and Transceiver is supplied from the internal 2.755V LDO. The operating voltage RF1LDO is kept constant up to the maximum rated load current. A reference voltage for the regulator circuit is generated from a bandgap reference. A low noise must be guaranteed. RF1LDO is controlled by SLEEP1_N and SLEEP2_N. If one of them is set to high, the regulator is enabled. The control method can be modified by TWI interface between external and internal control mode. If internal control mode is set, RF1LDO can only be enabled by SLEEP1_N or SLEEP2_N. RF1LDO is released with rising edge of POWER_ON signal.
Voltage Supply RF	VREGRF2, RF_EN, RESET_N	The linear controller is designed for 1.53V (±2%) and a maximum load current of 180 mA. The output voltage can be adjusted to three different values with TWI register by the μC. The selectable values are 1.53V(default), 2.70V, and 2.85V. Voltage and current for RF-VCO and Transceiver is supplied from the internal 1.53V LDO. The operating voltage RF2LDO is kept constant up to the maximum rated load current. A reference voltage for the regulator circuit is generated from a bandgap reference. A low noise must be guaranteed. RF2LDO is controlled by RF_EN. If it is set to high, the regulator is enabled. The control method can be modified by TWI interface between external and internal control mode. If internal control mode is set, RF2LDO can only be enabled by RF_EN. RF2LDO is released with rising edge of RESET_N signal.
Voltage Supply Audio	VREGA	The linear controller is designed for 2.9V(min. 2.84V, max. 2.96V) and a maximum load current of 190 mA. VDDA is used for the whole stereo analog supply. The DAC digital (VDDDAC), Low Noise Bandgap, Mono- and Stereoamplifier supplies are connected to VREGA or VBAT or an external LDO at 2.9V +/-5%. The AUDIO performances are guaranteed only, if the VREGA supplies all the stereo path. VREGA is controlled with TWI registers directly by the μC.

Functions	Pin Requirements	Implementation/Sequence	
Voltage Supply RTC	VLPREG	The linear controller is designed for 2.00V(min. 1.9V, max. 2.1V) and a maximum load current of 1 mA.	
		with TWI register by the μ C. The selectable values are 2.00(default), 1.82, 1.92 and 2.07V. LP-LDO is always working and will switch of only with POR signal.	
Voltage Supply SIM	VREGSIM	The linear controller is designed for 2.9V(min. 2.84V, max. 2.96V) and a maximum load current of 60 mA. The output voltage can be adjusted to a different value with TWI register by the μ C to 1.8V(min. 1.76V, max. 1.84V). This regulator can be activated by TWI register, but only in active mode. If the regulator is in power down, the output is pulled down by a transistor to avoid electrostatic charging of VREGSIM.	
Charge Support	CHARGE_UC, CHARGE, VDDCHARGE, AVDD, SENSE_IN, TBAT	GE_UC, GE, HARGE, SENSE_IN, SENSE_IN, Ac charge support will be integrated for controlling the battery charge function. It consists basically of a temperature sensor, an external charge FET, an integrated High-side driver for the external FET with an external resistor between the source and the gate of the charge FET. In the case of a rising edge at the CHARGE_UP the power source will be switched on. In this way the charge FET becomes conducting, provided that the integrated temperature comparator does not give the signal for extreme temperature and that no overvoltage is present at the VDD. In the case of falling slope at the CHARGE_UP, the current source is switched off and the pull-up resistor will make sure that the charge FET is blocked after a finite time. Temperature switchoff becomes effective at approx. T>60°C.	
Voltage supervision		The levels of regulator REG1, REG2, REGA, SIM_LDO, and also the supply voltage VBAT are supervised with comparators.	
Supervision of REG1 and REG2	REG1 REG2	In active mode the regulators are supervised permanently. If the voltage is under the threshold, the pin RESET_N stay Low and the ASIC go back to the power down mode. If the voltage is longer than Tmin under threshold voltage, the RESET_N is going to Low (Missing Watchdog signal -> phone switched off). The level of regulator REG1 and REG2 will be supervised permanently. If the voltage doesn't reach the threshold value at switch on, the RESET_N pin will stay low and the ASIC will go back to power down mode. The voltages are sensed continuously and digitally filtered with a time constant Tmin. If the regulator voltage is under threshold longer than Tmin, the RESET_N signal change to low and the uC will go to RESET condition (Missing Watchdog signal -> phone switched off).	
Powersupply supervision	VDD	If the battery voltage VDD exceeds VDD_high everything is switched off immediately within 1µs. Only the pullup circuitry for the external charge PMOS are active and will discharge the gate of the external PMOS	
VDDA supervision	VDDA	To provide a short circuit protection at output of VDDA and output of stereo buffer a voltage supervision is implemented. If the VDDA output is less then this threshold, the VDDA will be switched off for 128ms. After this time the VDDA will be started again. The VDDA supervision starts 60ms after startup of VDDA.	

Functions	Pin Requirements	Implementation/Sequence
Battery		Charging is stopped, when overtemperatur occurs. Within
temperature		128ms, 3 values are measured. When these 3 values are
supervision		identical status can be changed. The supervision is active in
		fast charge or trickle charge mode. Voltage on pin TBAT
		becomes smaller when temperature increases. If Vbat <
		(Vref_exe - Vhyst) charging is disabled. Only when Vtbatt >
		Vref_exe charging is enabled again.
Device		To protect the ASIC, the temperature is supervised. The
temperature		temperature is polled every 128ms and is filtered as in battery
supervision		temperature supervision. If overtemperatur is detected, a bit
		in the STATUS register is set and an interrupt is generated.
		Monitoring is started only in active mode.
Analog switch		The level can be defined by the bit out_port_high of the TWI
Outport		register. The high level can be derived of VREG2 or VREG3.
		Additional a pulldown transistor is connected to this node.
TWI Interface	TWI_CLK,	The TWI interface is an I2C compatible 2-wire interface with
	TWI_DATA,	an additional interrrupt pin to inform the µC about special
	TWI_INT	conditions.
		The interface can handele clock rates up to 400 kHz. The
		device adress is 010001B (31H)
Audio mode		Four audio amplifiers are integrated to support these modes:
functions		1. Supply the speaker in the phone with audio signals
		including the possibility of handsfree and antipop switch
		on and off. This is the AUDIO MONO MODE.
		Supply the speaker in the phone with ringing signal (RINGER MODE)
		3. Transfer a key click, generated in digital part to the
		speaker. (KEY-CLICK FUNCTION)
		4. Supply of stereo head set with stereo signal with short
		circuit protection. This is called the AUDIO STEREO
		MODE. These different modes with gain and multiplexing
		can be controlled via IVVI. Also the output can be
Audia Mana		Switched to TRI-STATE via TWI Interface.
Audio Mono		This mode is the main function of the amplifier to drive the
wode		amplifiers are used as differential mono amplifier to drive the
		speaker in the phone as external load. This unreferminal
		speaker also in low voltage mode. Both amplifier paths are
		inverting amplifiers with external AC coupling at the input to
		compensate offset failures. The gain can be adjusted with the
		TWI interface. The output stage of the amplifiers must be able
		to drive a low impedance load as a external speaker for the
		handsfree application.
		General parameters: Gain can be adjusted for each channel
		separately in steps of 1.5dB in the range of 21dB to -54 dB
		and in steps of 3 dB in the range of -54dB to -75dB. The
		signals for the amplifier are connected via an audio
		multiplexer with 3 pairs of input signals.

Functions	Pin Requirements	Implementation/Sequence
Audio Stereo Mode	VDDSTEREO STEREO1 STEREO2 STEREOM	For stereo mode 2 single ended buffers are used. These buffers will be supplied by the additional regulator with 2.9 Volt to be more stable against the GSM ripple on the battery voltage. Also reference voltage for the buffers is generated by a high precision, low noise bandgap reference for better performance. An external capacitor is needed to filter this reference additionally. The gain steps for the programmable gain amplifier are identical with the mono amplifier. Nokeyclick and ringer needed for the stero part. Gain can be controlled with the TWI. The connected speaker has an impedance of typical 16 Ohm. To guarantee a ANTI-POP noise a digital startup is implemented. This will allow a soft start of the VMID and creates a "clean" audio band during the startup. For eliminating external coupling capacitors for the speaker, an additional amplifier creates virtual ground (for both speakers). Accordingly to this, the max current of the virtual ground has to be the double of the normal output amplifier. Due to the power amplifier offset a DC current appear in the headset. Gain can be adjusted for each channel separately in steps of 1.5dB in the range of 21dB to -54 dB and in steps of 3 dB in the range of -54dB to -75dB
Ringer function	RINGIN	In ringer mode the ringing signal is transferred via the amplifier to the speaker to eliminate the additional buzzer. The speaker is controlled with a rectangular signal RINGIN. Input signal is digital signal with variable frequency. Amplitude is adjusted by TWI register. For start-up a smaller time constant must be used to allow a fast switch on behaviour. Ringing function can be started at any time. If the audio is off, the start-up is done with RINGER time constant. If audio is starting with AUDIO start-up, the time constant is switched to RINGER mode, too. If the audio amplifier is already up and running, the RINGIN is connected to the amplifier and audio sigal is muted due to open multiplexer.
Key click function		Pushing a key of the phone can be combined with a key click. This function is also realized with the audio amplifier in pulsed mode. The ASIC creates a digital PWM signal. Frequency of the PWM signal is 3.5 kHz. The start-up is similar to the ringer function. If the audio is off, the start-up is done with KEYCLICK time constant. If audio is starting with AUDIO start-up, the time constant is switched to KEYCLICK mode, too. If the audio amplifier is already up and running, the KEYCLICK is connected to the amplifier and audio sigal is muted due to open multiplexer.
Audio Multiplex Matrix	AUDIOA1 AUDIOA2 AUDIOB1 AUDIOB2 AUDIOC1 AUDIOC2	 Each of the three input sources should be switched to Mono and Stereo outputs. Furthermore a conversion can be done. Following sources: Mono differential Mono Single Ended (both channels parallel) Stereo The DAC can be switched off for using the analog external inputs. This principle will allow to do each combination and have different modes for stereo and mono in parallel.

Copyright 2005© Siemens AG

Functions	Pin Requirements	Implementation/Sequence
I2S Interface	CLO, WAO, DAO	The I2S Interface is a three wire connection that handels two timemultiplexed data channels. The three lines are the clock (CLO), the serial data line (DAO) and the word select line (WAO). The master I2S also generates the appropriate clock frequency for CLO set to 32 times the sampling rate (ES)
Audio DAC	VDDDAC	For digital to analog conversion a 16 bit sigma delta converter is used. Digital input signal is delivered with a I2S interface. The I2S interface should be 16 bit format. To be able to work with allpossible operating modes, the sampling frequency can vary from 8kHz to 48kHz. The performance of the audio output signal must be guaranteed over the full range the human ear is able to hear. This means for FS=8kHz the noise at frequencies higher than FS/2 must be suppressed. This is done by DSP in a single ended 2 nd order Low Pass filter. The clock for the I2S will be varied accordingly to the sampling frequency. Therefore a clock recovery based on CLO signal of the I2S can be implemented. This clock recovery must smooth any jitter of this clock to reduce the noise of the DAC.
PLL	VDDPLL PLLOUT	The PLL will have three frequency modes to produce a 32xCLO clock for the DSP and the DAC. The loop filter is realised with an external RC circuit. This PLL also contains a lock detector circuit.

9.2 Battery

As a standard battery a Lilon battery with a nominal capacity of 3,7 Volt/700mAh is used.

SIEMENS Com

Copyright 2005© Siemens AG

9.3 Charging Concept

9.3.1.1 Charging Concept

General

The battery is charged in the unit itself. The hardware and software is designed for Lilon with 4.2V technology.

Charging is started as soon as the phone is connected to an external charger. If the phone is not switched on, then charging takes place in the background (the customer can see this via the "Charge" symbol in the display). During normal use the phone is being charged (restrictions: see below).

Charging is enabled via a PMOS switch in the phone. This PMOS switch closes the circuit for the external charger to the battery. The EGOLDlite takes over the control of this switch depending on the charge level of the battery, whereby a disable function in the POWER SUPPLY ASIC hardware can override/interrupt the charging in the case of over voltage of the battery (only for Manganese Chemistry Battery types e.g. NEC).

With the new slim Lumberg IO connector we lose the charger recognition via SB line. Now we measure the charge current inside the POWER SUPPLY ASIC with a current monitor.

The charging software is able to charge the battery with an input current within the range of 350-600mA. If the Charge-Fet is switched off, then no charging current will flow into the battery (exception is trickle charging, see below).

For controlling the charging process it is necessary to measure the ambient (phone) temperature and the battery voltage. The temperature sensor will be an NTC resistor with a nominal resistance of $22k\Omega$ at 25°C. The determination of the temperature is achieved via a voltage measurement on a voltage divider in which one component is the NTC. The NTC for the ambient temperature will be on the PCB (26 MHz part).

SIEMENS Com

Copyright 2005© Siemens AG

Measurement of Battery, Battery Type and Ambient Temperature

For the conversion of signals like battery voltage, battery type, temperature, EGOLDlite provides identical measurement interfaces. Measurement circuit is consisting of external sensing components and integrated analog multiplexers and switches. Through corresponding switch settings, the measured signal is passed to input of ADC. 12-bit conversion results are readout by μ c and used for charging control.

Charging Characteristic of Lithium-Ion Cells

Lilon batteries are charged with a U/I characteristic, i.e. the charging current is regulated in relation to the battery voltage until a minimal charging current has been achieved. The maximum charging current is approx. 600mA, minimum about 100mA. The battery voltage may not exceed $4.2V \pm 50$ mV average. During the charging pulse current the voltage may reach 4.3V. The temperature range in which charging of the phone may be started ranges from 5...40°C, and the temperature at which charging takes place is from 0...45°C. Outside this range no charging takes place, the battery only supplies current.

Trickle Charging

The POWER SUPPLY ASIC is able to charge the battery at voltages below 3.2V without any support from the charge SW. The current will by measured indirectly via the voltage drop over a shunt resistor and linearly regulated inside the POWER SUPPLY ASIC. The current level during trickle charge for voltages <2.8V is in a range of 20-50mA and in a range of 50-100mA for voltages up to 3.75V. To limit the power dissipation of the dual charge FET the trickle charging is stopped in case the output voltage of the charger exceeds 10 Volt. The maximum trickle time is limited to 1 hour. As soon as the battery voltage reaches 3.2 V the POWER SUPPLY ASIC will switch on the phone automatically and normal charging will be initiated by software (note the restrictions on this item as stated below).

Normal Charging

For battery voltages above 3.2 Volt and normal ambient temperature between 5 and 40°C the battery can be charged with a charge current up to 1C*. This charging mode is SW controlled and starts if an accessory (charger) is detected with a supply voltage above 6.4 Volt by the POWER SUPPLY ASIC. The level of charge current is limited/controlled by the accessory or charger.

Copyright 2005© Siemens AG

SIEMENS Com

Restrictions

- A battery which has completely run down can not be re-charged quickly because the battery voltage is less than 3.0V and the logic which implements the charge control cannot be operated at this low voltage level. In this case the battery is recharged via trickle-charging. However, the charging symbol cannot be shown in the display because at this time logic supply voltages are not operating. The charging time for this trickle-charging (until the battery can be fast-charged from then on) is in the range of 1 hour. If, within this time, the battery voltage exceeds 3.2V, then the PMU switches on the mobile and charging continues in the Charge-Only Mode. In some circumstances it can happen that after trickle-charging and the usually initiated switch-on procedure of the mobile, the supply voltage collapses so much that the mobile phone switches off again. In this case trickle charging starts again with a now raised threshold voltage of 3.75V instead of 3.2V, at maximum for 20 minutes. The PMU will retry switching on the phone up to 3 times (within 60 minutes overall).
- Charging the battery will not be fully supported in case of using old accessory (generation '45' or earlier). It is not recommended to use any cables that adapt "old" to "new" Lumberg connector. Using such adapters with Marlin will have at least the following impact:
- 1) half-sine wave chargers (e.g. P35 & home station) can not be used for trickle charging
- 2) normal charging might be aborted before the battery is fully charged
- 3) EMC compliance can not be guaranteed
- A phone with a fully charged Lilon battery will not be charged immediately after switch-on. Any input current would cause an increase of the battery voltage above the maximum permissible value. As soon as the battery has been discharged to a level of about 95% (due to current consumption while use), it will be re-charged in normal charging mode.
 - The phone cannot be operated without a battery.
 - The phone will be destroyed if the battery is inserted with reversed polarity.
 - The mobile phone might be destroyed by connecting an unsuitable charger.

In case the transistor fails the ASIC will be destroyed. In the case of voltages lower than 15V and an improper current limitation the battery might be permanently damaged. A protection against grossly negligent use by the customer (e.g. direct connection of the charge contact to the electricity supply in a motor car) is not provided. Customer safety will not be affected by this restriction.

Copyright 2005© Siemens AG

10 Interfaces

10.1 Vibra (XG220)

Pin	IN/OUT	Remarks
1	1	BATT+
2	0	The FET V211, switching this signal, is controlled via the EGOLDLite signal VIBRA_UC.

10.2 Earpiece (XG243)

Pin	Name	IN/OUT	Remarks
1	EPP1	0	1st connection to the internal earpiece. Earpiece can be switched off in the case of accessory operation. EPP1 builds together with EPN1 the differential output to drive the multifunctional "earpiece" (earpiece, ringer, handsfree function).
2	EPN1	0	2nd connection to the internal earpiece. Earpiece can be switched off in the case of accessory operation.

10.3 Microphone

Pin	Name	IN/OUT	Remarks
1	MICP1	0	Microphone power supply. The same line carries the frequency speech signal.
2	GND MIC		

BATT+

10.4 Battery (X181)

	TP811		
Pin	Name	Level	Remarks
1	BATT+	3 V 4.5V	Positive battery pole
2	AKKU_TYP	0V2.65V	Recognition of battery/supplier
3	GND	-	Ground
4	GND	-	Ground

Page 48 of 53

10.5IO Connector (X211) with ESD protection (Z211) IO Connector

Pin	Name	IN/OUT	Notes
1	POWER	I/O	POWER is needed for charging batteries and for supplying the accessories. If accessories are supplied by mobile, talk- time and standby-time from telephone are reduced. Therefore it has to be respected on an as low as possible power consumption in the accessories.
2	GND		
3	ТХ	0	Serial interface
4	RX	1	Serial interface
5	DATA/CTS	I/O	Data-line for accessory-bus Use as CTS in data operation.
6	RTS	I/O	Use as RTS in data-operation.
7	CLK/DCD	I/O	Clock-line for accessory-bus. Use as DTC in data-operation.
8	AUDIO_L	Analog O	driving ext. left speaker With mono-headset Audio_L and Audio_R differential mode
9	GND		
10	AUDIO_R	Analog O	driving ext. right speaker With mono-headset Audio_L and Audio_R differential Signal
11	GND_MIC	Analog I	for ext. microphone
12	MICP2	Analog I	External microphone

SIEMENS Com

Copyright 2005© Siemens AG

ESD Protection with EMI filter

The Z211 is a 5-channel filter with over-voltage and ESD Protection array which is designed to provide filtering of undesired RF signals in the 800-4000MHz frequency band Additionally the Z211 contains diodes to protect downstream components from Electrostatic Discharge (ESD) voltages up to 8 kV.

Pin configuration of the Z211

Z211 Circuit Configuration

Page 50 of 53

SIEMENS Com

Copyright 2005© Siemens AG

10.6 SIM

Pin	Name	IN/OUT	Remarks
3	CCLK	0	Pulse for chipcard.
			The chipcard is controlled directly from the EGOLDlite.
2	CCRST	0	Reset for chipcard
7	CCIO		Data pin for chipcard;
		0	10 kΩ pull up at the <mark>CCVCC</mark> pin
1	CCVCC	-	Switchable power supply for chipcard;
			220 nF capacitors are situated close to the chipcard pins and are necessary for buffering current spikes.

11 Keyboard

The keyboard is connected via the lines KB0 – KB9 with the EGOLDlite.

KB 7 is used for the ON/OFF switch. The lines KB0 – KB5 are used as output signals. In the matrix KB6, KB8 and KB9 are used as input signals for the EGOLDlite.

Copyright 2005© Siemens AG

SIEMENS Com